Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth

Identifieur interne : 000075 ( PascalFrancis/Corpus ); précédent : 000074; suivant : 000076

Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth

Auteurs : JUNFENG LIU ; Denise L. Mauzerall ; Larry W. Horowitz ; Paul Ginoux ; Arlene M. Fiore

Source :

RBID : Pascal:10-0081605

Descripteurs français

English descriptors

Abstract

Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997-2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57-95%) over all regions, but are responsible for a smaller fraction of AOD (26-76%). We define "background" aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36-97% for surface concentrations and 38-89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 43
A06       @2 28
A08 01  1  ENG  @1 Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth
A11 01  1    @1 JUNFENG LIU
A11 02  1    @1 MAUZERALL (Denise L.)
A11 03  1    @1 HOROWITZ (Larry W.)
A11 04  1    @1 GINOUX (Paul)
A11 05  1    @1 FIORE (Arlene M.)
A14 01      @1 Woodrow Wilson School, Princeton University @2 Princeton, NJ 08544 @3 USA @Z 1 aut. @Z 2 aut.
A14 02      @1 Geophysical Fluid Dynamics Laboratory @2 Princeton, NJ 08540 @3 USA @Z 3 aut. @Z 4 aut. @Z 5 aut.
A20       @1 4327-4338
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000125106410100
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 10-0081605
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997-2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57-95%) over all regions, but are responsible for a smaller fraction of AOD (26-76%). We define "background" aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36-97% for surface concentrations and 38-89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.
C02 01  X    @0 001D16C
C02 02  2    @0 001E02D
C03 01  X  FRE  @0 Phénomène transport @5 01
C03 01  X  ENG  @0 Transport process @5 01
C03 01  X  SPA  @0 Fenómeno transporte @5 01
C03 02  X  FRE  @0 Transport @5 02
C03 02  X  ENG  @0 Transport @5 02
C03 02  X  SPA  @0 Transporte @5 02
C03 03  X  FRE  @0 Aérosol @5 03
C03 03  X  ENG  @0 Aerosols @5 03
C03 03  X  SPA  @0 Aerosol @5 03
C03 04  X  FRE  @0 Méthodologie @5 04
C03 04  X  ENG  @0 Methodology @5 04
C03 04  X  SPA  @0 Metodología @5 04
C03 05  X  FRE  @0 Distribution @5 05
C03 05  X  ENG  @0 Distribution @5 05
C03 05  X  SPA  @0 Distribución @5 05
C03 06  X  FRE  @0 Epaisseur optique @5 06
C03 06  X  ENG  @0 Optical thickness @5 06
C03 06  X  SPA  @0 Espesor óptico @5 06
C03 07  X  FRE  @0 Relation source puits @5 07
C03 07  X  ENG  @0 Source sink relationship @5 07
C03 07  X  SPA  @0 Relación fuente sumidero @5 07
C03 08  X  FRE  @0 Qualité air @5 08
C03 08  X  ENG  @0 Air quality @5 08
C03 08  X  SPA  @0 Calidad aire @5 08
C03 09  X  FRE  @0 Pollution air @5 35
C03 09  X  ENG  @0 Air pollution @5 35
C03 09  X  SPA  @0 Contaminación aire @5 35
C03 10  X  FRE  @0 Visibilité @5 36
C03 10  X  ENG  @0 Visibility @5 36
C03 10  X  SPA  @0 Visibilidad @5 36
N21       @1 053
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0081605 INIST
ET : Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth
AU : JUNFENG LIU; MAUZERALL (Denise L.); HOROWITZ (Larry W.); GINOUX (Paul); FIORE (Arlene M.)
AF : Woodrow Wilson School, Princeton University/Princeton, NJ 08544/Etats-Unis (1 aut., 2 aut.); Geophysical Fluid Dynamics Laboratory/Princeton, NJ 08540/Etats-Unis (3 aut., 4 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2009; Vol. 43; No. 28; Pp. 4327-4338; Bibl. 1 p.1/4
LA : Anglais
EA : Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997-2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57-95%) over all regions, but are responsible for a smaller fraction of AOD (26-76%). We define "background" aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36-97% for surface concentrations and 38-89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.
CC : 001D16C; 001E02D
FD : Phénomène transport; Transport; Aérosol; Méthodologie; Distribution; Epaisseur optique; Relation source puits; Qualité air; Pollution air; Visibilité
ED : Transport process; Transport; Aerosols; Methodology; Distribution; Optical thickness; Source sink relationship; Air quality; Air pollution; Visibility
SD : Fenómeno transporte; Transporte; Aerosol; Metodología; Distribución; Espesor óptico; Relación fuente sumidero; Calidad aire; Contaminación aire; Visibilidad
LO : INIST-8940B.354000125106410100
ID : 10-0081605

Links to Exploration step

Pascal:10-0081605

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth</title>
<author>
<name sortKey="Junfeng Liu" sort="Junfeng Liu" uniqKey="Junfeng Liu" last="Junfeng Liu">JUNFENG LIU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Woodrow Wilson School, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Woodrow Wilson School, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ginoux, Paul" sort="Ginoux, Paul" uniqKey="Ginoux P" first="Paul" last="Ginoux">Paul Ginoux</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fiore, Arlene M" sort="Fiore, Arlene M" uniqKey="Fiore A" first="Arlene M." last="Fiore">Arlene M. Fiore</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0081605</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0081605 INIST</idno>
<idno type="RBID">Pascal:10-0081605</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000075</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth</title>
<author>
<name sortKey="Junfeng Liu" sort="Junfeng Liu" uniqKey="Junfeng Liu" last="Junfeng Liu">JUNFENG LIU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Woodrow Wilson School, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Woodrow Wilson School, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ginoux, Paul" sort="Ginoux, Paul" uniqKey="Ginoux P" first="Paul" last="Ginoux">Paul Ginoux</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fiore, Arlene M" sort="Fiore, Arlene M" uniqKey="Fiore A" first="Arlene M." last="Fiore">Arlene M. Fiore</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Air pollution</term>
<term>Air quality</term>
<term>Distribution</term>
<term>Methodology</term>
<term>Optical thickness</term>
<term>Source sink relationship</term>
<term>Transport</term>
<term>Transport process</term>
<term>Visibility</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Phénomène transport</term>
<term>Transport</term>
<term>Aérosol</term>
<term>Méthodologie</term>
<term>Distribution</term>
<term>Epaisseur optique</term>
<term>Relation source puits</term>
<term>Qualité air</term>
<term>Pollution air</term>
<term>Visibilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997-2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57-95%) over all regions, but are responsible for a smaller fraction of AOD (26-76%). We define "background" aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36-97% for surface concentrations and 38-89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>28</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JUNFENG LIU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAUZERALL (Denise L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GINOUX (Paul)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FIORE (Arlene M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Woodrow Wilson School, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>4327-4338</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000125106410100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0081605</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997-2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57-95%) over all regions, but are responsible for a smaller fraction of AOD (26-76%). We define "background" aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36-97% for surface concentrations and 38-89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E02D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Transporte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthodologie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Methodology</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Metodología</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Distribution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Distribution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Distribución</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Epaisseur optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optical thickness</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espesor óptico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Relation source puits</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Source sink relationship</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Relación fuente sumidero</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Qualité air</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Air quality</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Calidad aire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Visibilité</s0>
<s5>36</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Visibility</s0>
<s5>36</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Visibilidad</s0>
<s5>36</s5>
</fC03>
<fN21>
<s1>053</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0081605 INIST</NO>
<ET>Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth</ET>
<AU>JUNFENG LIU; MAUZERALL (Denise L.); HOROWITZ (Larry W.); GINOUX (Paul); FIORE (Arlene M.)</AU>
<AF>Woodrow Wilson School, Princeton University/Princeton, NJ 08544/Etats-Unis (1 aut., 2 aut.); Geophysical Fluid Dynamics Laboratory/Princeton, NJ 08540/Etats-Unis (3 aut., 4 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2009; Vol. 43; No. 28; Pp. 4327-4338; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997-2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57-95%) over all regions, but are responsible for a smaller fraction of AOD (26-76%). We define "background" aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36-97% for surface concentrations and 38-89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.</EA>
<CC>001D16C; 001E02D</CC>
<FD>Phénomène transport; Transport; Aérosol; Méthodologie; Distribution; Epaisseur optique; Relation source puits; Qualité air; Pollution air; Visibilité</FD>
<ED>Transport process; Transport; Aerosols; Methodology; Distribution; Optical thickness; Source sink relationship; Air quality; Air pollution; Visibility</ED>
<SD>Fenómeno transporte; Transporte; Aerosol; Metodología; Distribución; Espesor óptico; Relación fuente sumidero; Calidad aire; Contaminación aire; Visibilidad</SD>
<LO>INIST-8940B.354000125106410100</LO>
<ID>10-0081605</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000075 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000075 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0081605
   |texte=   Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023